2 resultados para Aspiration Risk Assessment, Postoperative Complications, Perioperative Nursing

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a framework that is being developed for the prediction and analysis of electronics power module reliability both for qualification testing and in-service lifetime prediction. Physics of failure (PoF) reliability methodology using multi-physics high-fidelity and reduced order computer modelling, as well as numerical optimization techniques, are integrated in a dedicated computer modelling environment to meet the needs of the power module designers and manufacturers as well as end-users for both design and maintenance purposes. An example of lifetime prediction for a power module solder interconnect structure is described. Another example is the lifetime prediction of a power module for a railway traction control application. Also in the paper a combined physics of failure and data trending prognostic methodology for the health monitoring of power modules is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hurricanes are destructive storms with strong winds, intense storm surges, and heavy rainfall. The resulting impact from a hurricane can include structural damage to buildings and infrastructure, flooding, and ultimately loss of human life. This paper seeks to identify the impact of Hurricane Ivan on the aected population of Grenada, one of the Caribbean islands. Hurricane Ivan made landfall on 7th September 2004 and resulted in 80% of the population being adversely aected. The methods that were used to model these impacts involved performing hazard and risk assessments using GIS and remote sensing techniques. Spatial analyses were used to create a hazard and a risk map. Hazards were identied initially as those caused by storm surges, severe winds speeds, and flooding events related to Hurricane Ivan. These estimated hazards were then used to create a risk map. An innovative approach was adopted, including the use of hillshading to assess the damage caused by high wind speeds. This paper explains in detail the methodology used and the results produced.